论文标题
对各种计算的群体理论相干状态的概括
Generalization of group-theoretic coherent states for variational calculations
论文作者
论文摘要
我们介绍了纯量子状态的新家族,这些国家是在众所周知的吉尔莫尔 - 佩洛莫夫群体理论相干状态下建造的。我们通过将单位者构建为cartan子代理元件中的二次操作员的指数,并通过将这些单位物应用于常规的群体理论相干状态。这使我们能够产生在相干国家本身中找不到的纠缠,同时保留许多理想的特性。最重要的是,我们解释了如何有效评估物理可观察物的期望值。例子包括通用的自旋连接状态和广义高斯状态,但我们的构造可以应用于量子系统希尔伯特空间中代表的任何谎言组。我们评论他们作为凝聚态物理和量子信息中各种家族的适用性。
We introduce new families of pure quantum states that are constructed on top of the well-known Gilmore-Perelomov group-theoretic coherent states. We do this by constructing unitaries as the exponential of operators quadratic in Cartan subalgebra elements and by applying these unitaries to regular group-theoretic coherent states. This enables us to generate entanglement not found in the coherent states themselves, while retaining many of their desirable properties. Most importantly, we explain how the expectation values of physical observables can be evaluated efficiently. Examples include generalized spin-coherent states and generalized Gaussian states, but our construction can be applied to any Lie group represented on the Hilbert space of a quantum system. We comment on their applicability as variational families in condensed matter physics and quantum information.