论文标题
使用最佳控制的悬浮纳米颗粒的大量量子定域化:通过弱力进行力传感和纠缠的应用
Large Quantum Delocalization of a Levitated Nanoparticle using Optimal Control: Applications for Force Sensing and Entangling via Weak Forces
论文作者
论文摘要
我们建议最佳控制悬浮的纳米颗粒的谐波电位,以将其质量质量运动状态定为量子级比量度零点运动大的数量级。使用对谐波电位的爆炸控制,包括倒置它的可能性,初始冷却的悬浮纳米颗粒相干地扩展到大规模,然后以时间优势的方式收缩到初始状态。我们表明,该快速循环方案可用于增强力传感,并显着提高两个弱相互作用的纳米颗粒的纠缠率。我们将协议的性能以及可以探索的宏观量子制度进行参数化,这是纳米颗粒质量运动中的位移和频率噪声的函数。该噪声分析解释了与当前实验相关的破坏源。
We propose to optimally control the harmonic potential of a levitated nanoparticle to quantum delocalize its center-of-mass motional state to a length scale orders of magnitude larger than the quantum zero-point motion. Using a bang-bang control of the harmonic potential, including the possibility to invert it, the initial ground-state-cooled levitated nanoparticle coherently expands to large scales and then contracts to the initial state in a time-optimal way. We show that this fast loop protocol can be used to enhance force sensing as well as to dramatically boost the entangling rate of two weakly interacting nanoparticles. We parameterize the performance of the protocol, and therefore the macroscopic quantum regime that could be explored, as a function of displacement and frequency noise in the nanoparticle's center-of-mass motion. This noise analysis accounts for the sources of decoherence relevant to current experiments.