论文标题
太阳风的比较分析:Heliosphere中的模型电荷状态分布
Comparative Analysis of the Solar Wind: Modeling Charge State Distributions in the Heliosphere
论文作者
论文摘要
非平衡电离(NEI)是一个关键过程,通常在用热力学时间表对天体物理等离子体建模时通常忽略了,而不是时间标准的电离和重组。在本文中,我们对整个太阳月的磁性水力动力学(MHD)进行了NEI建模(MHD)在整个太阳月(1913年8月22日至9月18日)进行了太阳风(Carrington Rotation 1913),并将所得的电荷状态分布与Ulyses上的Solar Windion Composition Spotepss(Swics)进行比较。我们使用ulysses在约4 au处测量的速度将风轨迹追溯到20 $ r_ \ odot $,并在20 $ r_ \ odot $中获得血浆流量轨迹,使用预测科学公司执行的MHD仿真数据。我们假设每次从索表面上开始,并且在启发下均可启动,并在离子方面均匀地构成了均衡的态度,以相位地占用了时光,并且分析了空位,并且分析了空中的空位。轨迹。在我们的分析中:(1)根据NEI模型获得慢速和快风的电荷状态密度和比率,并将其与原位观察结果进行比较; (2)测量由瑞士观察到的几种离子的“冻结”距离,以确定电离状态固定时可能的相关性与在冻结高度下等离子体的电子密度和外部速度之间的相关性。这项研究提供了一个严格的测试,以比较来自模拟的外排效的电荷状态分布与远处近气球中的原位测量值。这展示了将电晕附近的等离子体条件与在星际空间中观察到的挑战相匹配的挑战。
Non-equilibrium ionization (NEI) is a key process often times neglected when modeling astrophysical plasmas with thermodynamical timescales much shorter than the timescales for ionization and recombination. In this paper, we perform NEI modeling on a magnetohydrodynamic (MHD) simulation of the solar wind during the Whole Sun Month (Carrington Rotation 1913 from 1996 August 22 to September 18), and compare the resulting charge state distributions with in situ measurements made with the Solar Wind Ion Composition Spectrometer (SWICS) on Ulysses. We trace the wind trajectory back to 20$R_\odot$ using the velocity measured by Ulysses at about 4 AU, and obtain the plasma flow trajectory within 20$R_\odot$ using the MHD simulation data performed by Predictive Science Inc. We assume that the wind started from the solar surface and was initially in ionization equilibrium, and analyze the time-dependent ionization state of solar wind along each of the trajectories. In our analysis we: (1) obtain charge state densities and ratios for slow and fast winds based on the NEI model, and compare them with in situ observations; and (2) measure the "freeze-in" distance for several ions observed by SWICS to determine a possible correlation between when the ionization states become fixed and the electron density and outward velocity of the plasma at the freeze-in height. This study provides a stringent test on comparing charge state distributions from the outer corona predicted from simulations with in situ measurements made in the far heliosphere. This showcases the challenges in matching plasma conditions near the corona to those observed in interplanetary space.