论文标题

用于使用定量T2松弛时间和深度学习的膝盖软骨降解的自动次区域评估的开源软件

Open source software for automatic subregional assessment of knee cartilage degradation using quantitative T2 relaxometry and deep learning

论文作者

Thomas, Kevin A., Krzemiński, Dominik, Kidziński, Łukasz, Paul, Rohan, Rubin, Elka B., Halilaj, Eni, Black, Marianne S., Chaudhari, Akshay, Gold, Garry E., Delp, Scott L.

论文摘要

目的:我们使用多回波自旋Echo(MESE)MRI评估了一个完全自动化的股骨软骨分割模型,用于测量T2松弛值和纵向变化。我们开了开源该模型和相应的分段。方法:我们训练了一个神经网络,以从MESE MRI分割股骨软骨。软骨被分为内侧,浅表深和前端形后边界的12个子区域。使用肌肉骨骼放射科医生的分割(读取器1)和模型的分割来计算次区域T2值和四年变化。使用28张图像进行比较。第二个专家(阅读器2)还评估了14个图像的子集以进行比较。结果:模型分割与读取器1分段一致,骰子得分为0.85 +/- 0.03。该模型的单个子区域的估计T2值与Reader 1的T2值一致,平均长矛人相关性为0.89,平均平均绝对误差(MAE)为1.34 ms。该模型的单个区域的T2估计变化为读者1,平均相关性为0.80,平均MAE为1.72 ms。该模型与读者1的同意至少与读取器2一样与读取器1的骰子分数(0.85 vs 0.75)和次区域T2值一致。结论:我们提出了一个快速,完全自动化的模型,用于分割MESE MRIS。使用其细分对软骨健康进行评估与专家彼此同意的专家的评估同意。这有可能加速骨关节炎。

Objective: We evaluate a fully-automated femoral cartilage segmentation model for measuring T2 relaxation values and longitudinal changes using multi-echo spin echo (MESE) MRI. We have open sourced this model and corresponding segmentations. Methods: We trained a neural network to segment femoral cartilage from MESE MRIs. Cartilage was divided into 12 subregions along medial-lateral, superficial-deep, and anterior-central-posterior boundaries. Subregional T2 values and four-year changes were calculated using a musculoskeletal radiologist's segmentations (Reader 1) and the model's segmentations. These were compared using 28 held out images. A subset of 14 images were also evaluated by a second expert (Reader 2) for comparison. Results: Model segmentations agreed with Reader 1 segmentations with a Dice score of 0.85 +/- 0.03. The model's estimated T2 values for individual subregions agreed with those of Reader 1 with an average Spearman correlation of 0.89 and average mean absolute error (MAE) of 1.34 ms. The model's estimated four-year change in T2 for individual regions agreed with Reader 1 with an average correlation of 0.80 and average MAE of 1.72 ms. The model agreed with Reader 1 at least as closely as Reader 2 agreed with Reader 1 in terms of Dice score (0.85 vs 0.75) and subregional T2 values. Conclusions: We present a fast, fully-automated model for segmentation of MESE MRIs. Assessments of cartilage health using its segmentations agree with those of an expert as closely as experts agree with one another. This has the potential to accelerate osteoarthritis research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源