论文标题
功能设计,以提高在线资源分配和采购成本的竞争比率
Function Design for Improved Competitive Ratio in Online Resource Allocation with Procurement Costs
论文作者
论文摘要
我们研究了在线资源分配的问题,其中多个客户依次到达,卖方必须不可撤销地将资源分配给每个传入的客户,同时还面临总分配的采购成本。假设资源采购遵循了一个先验已知的成本功能,目的是最大程度地提高满足客户要求而获得的奖励,而没有累积的采购成本。我们分析了这种环境中原始偶算法的竞争比,并开发了一个优化框架,以合成算法使用的替代功能,以提高原始二次算法的竞争比率。我们的第一种设计方法着重于多项式采购成本函数,并使用最佳替代功能来提供比艺术状态更精致的结合。我们的第二种设计方法使用Quasiconvex优化来找到一类采购成本功能的最佳设计参数。数值示例用于说明设计技术。我们通过扩展分析来设计出发布的定价机制,其中算法不需要客户的喜好。
We study the problem of online resource allocation, where multiple customers arrive sequentially and the seller must irrevocably allocate resources to each incoming customer while also facing a procurement cost for the total allocation. Assuming resource procurement follows an a priori known marginally increasing cost function, the objective is to maximize the reward obtained from fulfilling the customers' requests sans the cumulative procurement cost. We analyze the competitive ratio of a primal-dual algorithm in this setting, and develop an optimization framework for synthesizing a surrogate function for the procurement cost function to be used by the algorithm, in order to improve the competitive ratio of the primal-dual algorithm. Our first design method focuses on polynomial procurement cost functions and uses the optimal surrogate function to provide a more refined bound than the state of the art. Our second design method uses quasiconvex optimization to find optimal design parameters for a general class of procurement cost functions. Numerical examples are used to illustrate the design techniques. We conclude by extending the analysis to devise a posted pricing mechanism in which the algorithm does not require the customers' preferences to be revealed.