论文标题

图表表示图表的对比度学习

Motif-Driven Contrastive Learning of Graph Representations

论文作者

Zhang, Shichang, Hu, Ziniu, Subramonian, Arjun, Sun, Yizhou

论文摘要

通过自我监督的对比学习,预训练图神经网络(GNN)最近引起了很多关注。但是,大多数现有作品都集中在节点级对比度学习上,该学习无法捕获全局图结构。进行子图级对比度学习的主要挑战是对语义上有意义的信息子图进行采样。为了解决它,我们建议学习图表基序,这些图基序经常是子图模式(例如,分子的官能团),以更好地进行子图采样。我们的框架图案驱动的图形表示对比度学习(微图)可以:1)使用GNN从大图数据集中提取图案; 2)利用学习的图案来对GNN的对比学习进行抽样的子图。我们将基础学习作为一个可区分的聚类问题,并采用EM簇来将相似和重要的子图组分为几个基序。在这些学识渊博的图案的指导下,对采样器进行了训练,以产生更多信息的子图,并且这些子图用于通过图形对比度学习学习来训练GNN。通过对具有微图纸的OGBG-MOLHIV数据集进行预训练,预先培训的GNN在各种下游基准数据集上实现了2.04%的ROC-AUC平均绩效增强,这比其他最先进的自我服务的学习基础要高得多。

Pre-training Graph Neural Networks (GNN) via self-supervised contrastive learning has recently drawn lots of attention. However, most existing works focus on node-level contrastive learning, which cannot capture global graph structure. The key challenge to conducting subgraph-level contrastive learning is to sample informative subgraphs that are semantically meaningful. To solve it, we propose to learn graph motifs, which are frequently-occurring subgraph patterns (e.g. functional groups of molecules), for better subgraph sampling. Our framework MotIf-driven Contrastive leaRning Of Graph representations (MICRO-Graph) can: 1) use GNNs to extract motifs from large graph datasets; 2) leverage learned motifs to sample informative subgraphs for contrastive learning of GNN. We formulate motif learning as a differentiable clustering problem, and adopt EM-clustering to group similar and significant subgraphs into several motifs. Guided by these learned motifs, a sampler is trained to generate more informative subgraphs, and these subgraphs are used to train GNNs through graph-to-subgraph contrastive learning. By pre-training on the ogbg-molhiv dataset with MICRO-Graph, the pre-trained GNN achieves 2.04% ROC-AUC average performance enhancement on various downstream benchmark datasets, which is significantly higher than other state-of-the-art self-supervised learning baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源