论文标题

天文图像的自我监督的表示

Self-Supervised Representation Learning for Astronomical Images

论文作者

Hayat, Md Abul, Stein, George, Harrington, Peter, Lukić, Zarija, Mustafa, Mustafa

论文摘要

Sky Surveys是天文学中最大的数据生成器,为提取有意义的科学信息的自动化工具是绝对必要的。我们表明,在不需要标签的情况下,自我监管的学习恢复了Sky Survey图像的表示,这些表示对各种科学任务具有语义上有用。这些表示形式可以直接用作功能或微调,以优于仅在标记数据上训练的监督方法。我们将对比度学习框架应用于来自斯隆数字天空调查(SDSS)的多波段星系光度法以学习图像表示。然后,我们将它们用于星系形态分类,并使用Galaxy Zoo 2数据集和SDSS光谱的标签进行微调红移估算。在这两个下游任务中,使用相同的学会表示,我们的表现都优于监督的最新结果,我们表明我们的方法可以实现监督模型的准确性,而使用培训标签少2-4倍。

Sky surveys are the largest data generators in astronomy, making automated tools for extracting meaningful scientific information an absolute necessity. We show that, without the need for labels, self-supervised learning recovers representations of sky survey images that are semantically useful for a variety of scientific tasks. These representations can be directly used as features, or fine-tuned, to outperform supervised methods trained only on labeled data. We apply a contrastive learning framework on multi-band galaxy photometry from the Sloan Digital Sky Survey (SDSS) to learn image representations. We then use them for galaxy morphology classification, and fine-tune them for photometric redshift estimation, using labels from the Galaxy Zoo 2 dataset and SDSS spectroscopy. In both downstream tasks, using the same learned representations, we outperform the supervised state-of-the-art results, and we show that our approach can achieve the accuracy of supervised models while using 2-4 times fewer labels for training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源