论文标题

从经典点粒子电流中边界项的软定理

Soft Theorems from Boundary Terms in the Classical Point Particle Currents

论文作者

DeLisle, Colby, Wilson-Gerow, Jordan, Stamp, Philip

论文摘要

软化已被证明可以在QED中保持子领先顺序,并在扰动量子重力中以亚sub-sub-defing顺序保持,可以找到各种环路和非宇宙校正。在这里,我们表明,在树级上分解的所有术语都可以唯一地识别为对点粒子的电流和应力张量的经典表达式中已经存在的边界项。此外,我们表明,除了子领先或子订阅订单外,不能唯一地识别此类边界项,从而提供了证据表明,树级软因子的“普遍性”仅适用于这些顺序。最后,我们表明,这些边界项因素幅度均为预期的所有树级幅度,这是一个理论,其中引力夫妇到标量场。

Soft factorization has been shown to hold to sub-leading order in QED and to sub-sub-leading order in perturbative quantum gravity, with various loop and non-universal corrections that can be found. Here we show that all terms factorizing at tree level can be uniquely identified as boundary terms that exist already in the classical expressions for the electric current and stress tensor of a point particle. Further, we show that one cannot uniquely identify such boundary terms beyond the sub-leading or sub-sub-leading orders respectively, providing evidence that the "universality" of the tree level soft factor only holds to these orders. Finally, we show that these boundary terms factor out of all tree level amplitudes as expected, in a theory where gravitons couple to a scalar field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源