论文标题

关于时空预测方法的调查

A Survey on Spatial and Spatiotemporal Prediction Methods

论文作者

Jiang, Zhe

论文摘要

随着GPS和遥感技术的发展,正在从各个领域收集大量的地理空间和时空数据,这推动了有效有效的预测方法的需求。给定具有解释性特征和有针对性响应的空间数据样本(分类或连续),问题旨在学习一个模型,该模型可以根据解释性特征预测响应变量。对于地球科学,城市信息学,地年代媒体分析和公共卫生中的广泛应用,问题很重要,但是由于时空数据的独特特征,包括空间和时间自相关,空间异质性,临时非平稳性,有限的地面真理以及多种规模和分辨率,这是充满挑战的。本文对空间和时空预测的原理和方法进行了系统的综述。我们提供的分类法对他们解决的主要挑战进行了分类。对于每种方法,我们介绍其基本假设,理论基础,并讨论其优势和缺点。我们的目标是帮助跨学科的领域科学家选择解决问题的技术,更重要的是,帮助数据挖掘研究人员了解时空和时空预测的主要原理和方法,并确定未来的研究机会。

With the advancement of GPS and remote sensing technologies, large amounts of geospatial and spatiotemporal data are being collected from various domains, driving the need for effective and efficient prediction methods. Given spatial data samples with explanatory features and targeted responses (categorical or continuous) at a set of locations, the problem aims to learn a model that can predict the response variable based on explanatory features. The problem is important with broad applications in earth science, urban informatics, geosocial media analytics and public health, but is challenging due to the unique characteristics of spatiotemporal data, including spatial and temporal autocorrelation, spatial heterogeneity, temporal non-stationarity, limited ground truth, and multiple scales and resolutions. This paper provides a systematic review on principles and methods in spatial and spatiotemporal prediction. We provide a taxonomy of methods categorized by the key challenge they address. For each method, we introduce its underlying assumption, theoretical foundation, and discuss its advantages and disadvantages. Our goal is to help interdisciplinary domain scientists choose techniques to solve their problems, and more importantly, to help data mining researchers to understand the main principles and methods in spatial and spatiotemporal prediction and identify future research opportunities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源