论文标题
由电子掺杂的库酸盐nd $ _ {2-x} $ ce $ _x $ cuo $ _4 $ _4 $ _4 $ _4 $ _4 $ _4 $ _4 $ _4 $ _4 $ _4 $ _4 $ _4 $ _4 $ _4 $ _4 $ _4 $
Superconductivity induced by structural reorganization in the electron-doped cuprate Nd$_{2-x}$Ce$_x$CuO$_4$
论文作者
论文摘要
电子掺杂的和孔掺杂的超导层蛋白酶表现出对称相图作为掺杂的函数。但是,这种对称性仅是近似的。实际上,电子掺杂的库酸酯仅在特定的退火过程之后才成为超导体:这种退火仅影响少量,但对样品的电子特性产生了巨大影响。在这里,我们报告了缺氧不良的nd $ _ {2-x} $ ce $ _x $ cuO $ _4 $薄膜在无氧环境中生长的薄膜,在无氧环境中生长,在无氧环境中,在无氧的环境中,在无氧的环境中发生了超导。通过X射线衍射验证,退火引起了晶体结构中CuO $ _2 $平面之间的层间距离的增加。由于该距离与顶端位置上的氧浓度相关,并且在退火过程中氧含量不能实质上增加,因此我们的实验表明,超导相变必须归因于在退火过程中氧离子向根尖位置的迁移。此外,正如我们通过第一原理密度功能理论计算确认的那样,从理论上讲,膜的结构和传输属性的变化可以通过对Cuo $ _2 $平面的顶端位置的特定重新分布来描述,从而将电子带结构重现并抑制反量的序列,允许对反量的序列进行反序列,从而允许孔。
Electron-doped and hole-doped superconducting cuprates exhibit a symmetric phase diagram as a function of doping. This symmetry is however only approximate. Indeed, electron-doped cuprates become superconductors only after a specific annealing process: This annealing affects the oxygen content by only a tiny amount, but has a dramatic impact on the electronic properties of the sample. Here we report the occurrence of superconductivity in oxygen-deficient Nd$_{2-x}$Ce$_x$CuO$_4$ thin films grown in an oxygen-free environment, after annealing in pure argon flow. As verified by x-ray diffraction, annealing induces an increase of the interlayer distance between CuO$_2$ planes in the crystal structure. Since this distance is correlated to the concentration of oxygens in apical positions, and since oxygen content cannot substantially increase during annealing, our experiments indicate that the superconducting phase transition has to be ascribed to a migration of oxygen ions to apical positions during annealing. Moreover, as we confirm via first-principles density functional theory calculations, the changes in the structural and transport properties of the films can be theoretically described by a specific redistribution of the existing oxygen ions at apical positions with respect to CuO$_2$ planes, which remodulates the electronic band structure and suppresses the antiferromagnetic order, allowing the emergence of hole superconductivity.