论文标题
拓扑明星,黑洞和广义电荷Weyl溶液
Topological Stars, Black holes and Generalized Charged Weyl Solutions
论文作者
论文摘要
我们在五维的爱因斯坦 - 马克斯韦尔理论中构建了光滑的静态气泡解决方案,称为拓扑恒星,这些理论是渐近的,该理论是渐近的$ \ mathbb {r}^{1,3} \ times $ s $ s $^1 $。通过允许电磁通量包裹光滑的拓扑周期来支持气泡。该解决方案与非超级静态带电的黑弦相同,在四个维度上降低到黑洞。我们通过在同一理论中构建封闭形式的通用电荷WEYL溶液来推广到一条线上的多体构型。通用解决方案由叠加在线上的拓扑恒星和黑色琴弦组成,这些线被电磁通量包裹。我们将解决方案嵌入了IIB类字符串理论中的S $^1 \ times $ t $^4 $。在此框架中,带电的Weyl溶液在非苏匹配和非超级黑洞制度中的多个带电对象的字符串理论中提供了一种新颖的类别。
We construct smooth static bubble solutions, denoted as topological stars, in five-dimensional Einstein-Maxwell theories which are asymptotic to $\mathbb{R}^{1,3}\times$S$^1$. The bubbles are supported by allowing electromagnetic fluxes to wrap smooth topological cycles. The solutions live in the same regime as non-extremal static charged black strings, that reduce to black holes in four dimensions. We generalize to multi-body configurations on a line by constructing closed-form generalized charged Weyl solutions in the same theory. Generic solutions consist of topological stars and black strings stacked on a line, that are wrapped by electromagnetic fluxes. We embed the solutions in type IIB String Theory on S$^1\times$T$^4$. In this framework, the charged Weyl solutions provide a novel class in String Theory of multiple charged objects in the non-supersymmetric and non-extremal black hole regime.