论文标题

提高用户影响指标的可预测性支持云服务中的异常检测

Improving Predictability of User-Affecting Metrics to Support Anomaly Detection in Cloud Services

论文作者

Rufino, Vilc, Nogueira, Mateus, Avritzer, Alberto, Menasché, Daniel, Russo, Barbara, Janes, Andrea, Ferme, Vincenzo, Van Hoorn, André, Schulz, Henning, Lima, Cabral

论文摘要

异常检测系统旨在检测和报告网络系统中的攻击或意外行为。先前的工作表明,异常对系统性能有影响,并且性能签名可有效地用于实现IDS。在本文中,我们提出了一项分析性和实验性研究,该研究对基于性能签名和系统可伸缩性的异常检测之间的权衡。所提出的方法结合了分析建模和负载测试,以找到基于签名的ID的最佳配置。我们采用了一种重尾双模式建模方法,其中“长”作业代表了大量资源消耗交易,例如DDOS攻击生成;使用从受控实验获得的结果进行参数化。出于绩效目的,平均响应时间是要最小化的关键指标,而出于安全目的,必须考虑响应时间差异和分类精度。我们分析中的主要见解是:(i)最佳的服务器数量最小化响应时间差异,(ii)最小化响应时间方差并最大化分类准确性的服务器数量通常小于或等于最小化的平均响应时间。因此,出于安全目的,提高分类准确性可能值得稍微牺牲性能。

Anomaly detection systems aim to detect and report attacks or unexpected behavior in networked systems. Previous work has shown that anomalies have an impact on system performance, and that performance signatures can be effectively used for implementing an IDS. In this paper, we present an analytical and an experimental study on the trade-off between anomaly detection based on performance signatures and system scalability. The proposed approach combines analytical modeling and load testing to find optimal configurations for the signature-based IDS. We apply a heavy-tail bi-modal modeling approach, where "long" jobs represent large resource consuming transactions, e.g., generated by DDoS attacks; the model was parametrized using results obtained from controlled experiments. For performance purposes, mean response time is the key metric to be minimized, whereas for security purposes, response time variance and classification accuracy must be taken into account. The key insights from our analysis are: (i) there is an optimal number of servers which minimizes the response time variance, (ii) the sweet-spot number of servers that minimizes response time variance and maximizes classification accuracy is typically smaller than or equal to the one that minimizes mean response time. Therefore, for security purposes, it may be worth slightly sacrificing performance to increase classification accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源