论文标题

使用DAC-ML迈向样品有效的发作对照

Towards sample-efficient episodic control with DAC-ML

论文作者

Freire, Ismael T., Amil, Adrián F., Vouloutsi, Vasiliki, Verschure, Paul F. M. J.

论文摘要

人工智能中的样本信息问题是指当前深层增强学习模型无法在少数发作中优化行动策略。最近的研究试图通过添加记忆系统和建筑偏见来克服这一局限性,以提高学习速度,例如在情节增强学习中。但是,尽管取得了增量的改进,但它们的绩效仍然与人类学习行为政策的学习方式相提并论。在本文中,我们利用了分布式自适应控制(DAC)思维和大脑理论的设计原理,以构建一种新颖的认知体系结构(DAC-ML),通过结合海马启发的顺序记忆系统,可以快速收敛到有效的动作策略,从而最大程度地提高奖励奖励,从而在挑战性锻造中最大化奖励。

The sample-inefficiency problem in Artificial Intelligence refers to the inability of current Deep Reinforcement Learning models to optimize action policies within a small number of episodes. Recent studies have tried to overcome this limitation by adding memory systems and architectural biases to improve learning speed, such as in Episodic Reinforcement Learning. However, despite achieving incremental improvements, their performance is still not comparable to how humans learn behavioral policies. In this paper, we capitalize on the design principles of the Distributed Adaptive Control (DAC) theory of mind and brain to build a novel cognitive architecture (DAC-ML) that, by incorporating a hippocampus-inspired sequential memory system, can rapidly converge to effective action policies that maximize reward acquisition in a challenging foraging task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源