论文标题

在移动设备上实现实时LIDAR 3D对象检测

Achieving Real-Time LiDAR 3D Object Detection on a Mobile Device

论文作者

Zhao, Pu, Niu, Wei, Yuan, Geng, Cai, Yuxuan, Sung, Hsin-Hsuan, Liu, Sijia, Shen, Xipeng, Ren, Bin, Wang, Yanzhi, Lin, Xue

论文摘要

3D对象检测是一项重要任务,尤其是在自主驾驶应用程序域中。但是,通过在自动驾驶汽车中的边缘计算设备上使用有限的计算和内存资源来支持实时性能是一项挑战。为了实现这一目标,我们提出了一个编译器意识的统一框架,将网络增强和修剪搜索与增强学习技术结合在一起,以实现在资源有限的边缘计算设备上实时推断3D对象检测。具体而言,发电机复发的神经网络(RNN)被用来自动提供网络增强和修剪搜索的统一计划,而无需人类的专业知识和帮助。统一方案的评估性能可以馈回训练发电机RNN。实验结果表明,提出的框架首先在具有竞争性检测性能的移动设备(三星Galaxy S20手机)上实现实时3D对象检测。

3D object detection is an important task, especially in the autonomous driving application domain. However, it is challenging to support the real-time performance with the limited computation and memory resources on edge-computing devices in self-driving cars. To achieve this, we propose a compiler-aware unified framework incorporating network enhancement and pruning search with the reinforcement learning techniques, to enable real-time inference of 3D object detection on the resource-limited edge-computing devices. Specifically, a generator Recurrent Neural Network (RNN) is employed to provide the unified scheme for both network enhancement and pruning search automatically, without human expertise and assistance. And the evaluated performance of the unified schemes can be fed back to train the generator RNN. The experimental results demonstrate that the proposed framework firstly achieves real-time 3D object detection on mobile devices (Samsung Galaxy S20 phone) with competitive detection performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源