论文标题

具有基质权重的伯格曼投影的加权估计值

Weighted estimates of the Bergman projection with matrix weights

论文作者

Huo, Zhenghui, Wick, Brett D.

论文摘要

我们为伯格曼投影(Bergman Profoctution)建立了一类伪convex域的矩阵权重的加权不等式。我们扩展了Aleman-Constantin的结果,并获得了以下估计$ p $:\ [\ | p \ | _ {l^2(ω,w)} \ leq c(\ Mathcal b_2(w))^{2}。 $ c $是一个独立于权重$ W $的常数,但取决于尺寸和域。

We establish a weighted inequality for the Bergman projection with matrix weights for a class of pseudoconvex domains. We extend a result of Aleman-Constantin and obtain the following estimate for the weighted norm of $P$: \[\|P\|_{L^2(Ω,W)}\leq C(\mathcal B_2(W))^{2}.\] Here $\mathcal B_2(W)$ is the Bekollé-Bonami constant for the matrix weight $W$ and $C$ is a constant that is independent of the weight $W$ but depends upon the dimension and the domain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源