论文标题

与温度依赖性热系数的扩散交流方程的Stefan问题

Stefan problems for the diffusion-convection equation with temperature-dependent thermal coefficients

论文作者

Bollati, Julieta, Briozzo, Adriana C.

论文摘要

考虑了半无限平板的不同一相Stefan问题,涉及移动相变材料以及依赖温度的热系数。在固定面上,至少存在一种相似解决方案的存在被证明施加了迪利奇,诺伊曼,罗宾或辐射感染边界条件。假定在扩散 - 转移方程的对流项中产生的速度取决于温度和时间。在每种情况下,都会获得等效的普通微分问题,从而产生一个积分方程的系统,并结合表征自由边界的参数条件,该参数通过双重固定点分析解决了。提供了一些用于特定热系数的解决方案。

Different one-phase Stefan problems for a semi-infinite slab are considered, involving a moving phase change material as well as temperature dependent thermal coefficients. Existence of at least one similarity solution is proved imposing a Dirichlet, Neumann, Robin or radiative-convective boundary condition at the fixed face. The velocity that arises in the convective term of the diffusion-convection equation is assumed to depend on temperature and time. In each case, an equivalent ordinary differential problem is obtained giving rise to a system of an integral equation coupled with a condition for the parameter that characterizes the free boundary, which is solved though a double-fixed point analysis. Some solutions for particular thermal coefficients are provided.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源