论文标题

通过Matroid交叉路口填充混合高压孔具有柔性根部

Packing of mixed hyperarborescences with flexible roots via matroid intersection

论文作者

Hörsch, Florian, Szigeti, Zoltán

论文摘要

给定一个混合的超graph $ \ nathcal {f} =(v,\ \ \ \ \ cap \ cup \ mathcal {e})$,functions $ f,g:v \ rightarrow \ rightarrow \ mathbb {z} _+$和$ k $ k $ k $ spanne $ spass $ $ spance $ $ spance $ $ spance $ $ spance $ $ spance $ n $ ge $ ge $ ge($) \ in v $是至少$ f(v)$的根,最多是混合hyperarborescences的$ g(v)$。我们给出了承认这种包装的混合超图的特征。这概括了弗兰克(Frank)以及最近的高(Gao)和杨(Gao)和杨(Yang)的结果。我们的方法是基于Matroid交叉路口的,概括了Edmonds的构造。我们还获得了一种用于在上述问题上找到最小权重解决方案的算法。

Given a mixed hypergraph $\mathcal{F}=(V,\mathcal{A}\cup \mathcal{E})$, functions $f,g:V\rightarrow \mathbb{Z}_+$ and an integer $k$, a packing of $k$ spanning mixed hyperarborescences is called $(k,f,g)$-flexible if every $v \in V$ is the root of at least $f(v)$ and at most $g(v)$ of the mixed hyperarborescences. We give a characterization of the mixed hypergraphs admitting such packings. This generalizes results of Frank and, more recently, Gao and Yang. Our approach is based on matroid intersection, generalizing a construction of Edmonds. We also obtain an algorithm for finding a minimum weight solution to the above mentioned problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源