论文标题
全息纠缠熵,用于扰动的高源角重力
Holographic entanglement entropy for perturbative higher-curvature gravities
论文作者
论文摘要
全息纠缠熵的较高性重力涉及加权总和,其评估(超出二次秩序)需要复杂的理论依赖性分裂,对riemann张量。使用一般相对论的分裂,可以获得对一般高素质重力有效的明确公式。在此设置中,我们对功能性的功能进行了新颖的重写,该功能可以摆脱加权总和。该公式对于一般的立方和四分之一的理论特别整洁,我们使用它来明确评估相应的功能。对于Lovelock理论,我们发现可以根据差分运算符的指数来编写异常术语。我们还表明,订单 - $ n $密度涉及$ n_r $ riemann Tensors(与$ n_r $ ricci的张力相结合),达到了多达$ 2N_R-2 $外部曲线的术语。特别是,由任意RICCI曲率与零或一个Riemann张量相结合的密度没有异常项。最后,我们将结果应用于立方重力,以评估来自一般维度的各个对称区域的通用术语。特别是,我们表明,$ d = 3 $中角区域的通用函数特征在其功能依赖性上对开放角度相对于爱因斯坦重力结果进行了修改。
The holographic entanglement entropy functional for higher-curvature gravities involves a weighted sum whose evaluation, beyond quadratic order, requires a complicated theory-dependent splitting of the Riemann tensor components. Using the splittings of general relativity one can obtain unambiguous formulas perturbatively valid for general higher-curvature gravities. Within this setup, we perform a novel rewriting of the functional which gets rid of the weighted sum. The formula is particularly neat for general cubic and quartic theories, and we use it to explicitly evaluate the corresponding functionals. In the case of Lovelock theories, we find that the anomaly term can be written in terms of the exponential of a differential operator. We also show that order-$n$ densities involving $n_R$ Riemann tensors (combined with $n-n_R$ Ricci's) give rise to terms with up to $2n_R-2$ extrinsic curvatures. In particular, densities built from arbitrary Ricci curvatures combined with zero or one Riemann tensors have no anomaly term in their functionals. Finally, we apply our results for cubic gravities to the evaluation of universal terms coming from various symmetric regions in general dimensions. In particular, we show that the universal function characteristic of corner regions in $d=3$ gets modified in its functional dependence on the opening angle with respect to the Einstein gravity result.