论文标题
使用深度学习的空中图像堆燃烧检测:火焰数据集
Aerial Imagery Pile burn detection using Deep Learning: the FLAME dataset
论文作者
论文摘要
野火是美国最昂贵,最致命的自然灾害之一,造成了数百万公顷的森林资源的损害,并威胁着人们和动物的生命。特别重要的是对消防员和运营力量的风险,这强调了利用技术以最大程度地降低对人和财产的危险的需求。火焰(基于空气的机器机器学习评估评估)提供了火灾的航空图像数据集以及用于火灾检测和分割的方法,可以帮助消防员和研究人员制定最佳的消防策略。本文提供了一个在亚利桑那松树林中的规定燃烧的堆积物中收集的火灾图像数据集。该数据集包括视频记录和由红外摄像机捕获的热图。捕获的视频和图像在框架方面进行注释和标记,以帮助研究人员轻松应用其火灾检测和建模算法。本文还突出了两个机器学习问题的解决方案:(1)基于火焰的存在[和不存在]的视频帧分类。开发了一种人工神经网络(ANN)方法,该方法达到了76%的分类精度。 (2)使用分割方法确切确定火边界的火灾检测。深度学习方法是根据U-NET上采样和下采样方法设计的,以从视频帧中提取消防面具。我们的火焰方法的精度为92%,召回84%。未来的研究将使用热图像扩展免费燃烧广播火的技术。
Wildfires are one of the costliest and deadliest natural disasters in the US, causing damage to millions of hectares of forest resources and threatening the lives of people and animals. Of particular importance are risks to firefighters and operational forces, which highlights the need for leveraging technology to minimize danger to people and property. FLAME (Fire Luminosity Airborne-based Machine learning Evaluation) offers a dataset of aerial images of fires along with methods for fire detection and segmentation which can help firefighters and researchers to develop optimal fire management strategies. This paper provides a fire image dataset collected by drones during a prescribed burning piled detritus in an Arizona pine forest. The dataset includes video recordings and thermal heatmaps captured by infrared cameras. The captured videos and images are annotated and labeled frame-wise to help researchers easily apply their fire detection and modeling algorithms. The paper also highlights solutions to two machine learning problems: (1) Binary classification of video frames based on the presence [and absence] of fire flames. An Artificial Neural Network (ANN) method is developed that achieved a 76% classification accuracy. (2) Fire detection using segmentation methods to precisely determine fire borders. A deep learning method is designed based on the U-Net up-sampling and down-sampling approach to extract a fire mask from the video frames. Our FLAME method approached a precision of 92% and a recall of 84%. Future research will expand the technique for free burning broadcast fire using thermal images.