论文标题

Google Earth Engine启用Python的方法,以改善人为古地景观功能的识别

A Google Earth Engine-enabled Python approach to improve identification of anthropogenic palaeo-landscape features

论文作者

Brandolini, Filippo, Ribas, Guillem Domingo, Zerboni, Andrea, Turner, Sam

论文摘要

近几十年来,景观可持续发展的必要性已成为一个重要主题。当前的方法采用了整体方法来进行景观遗产,并促进跨学科的对话,以促进互补的景观管理策略。随着自然和文化景观遗产的社会经济价值观越来越多地在全球范围内得到认可,越来越多的遥感工具被越来越多地用于促进景观遗产的记录和管理。卫星遥感技术已实现了景观研究的重大改进。 Google Earth Engine的基于云的平台的出现允许快速探索和处理卫星图像,例如Landsat和Copernicus Sentinel数据集。在本文中,在PO平原上评估了Sentinel-2卫星数据在鉴定古旋转特征中的使用,因为它以自缩循环以来的人类剥削为特征。已经采用了一种多阶梯方法来研究卫星图像检测埋藏的水文和人为特征以及光谱指数和光谱分解分析的潜力。这项研究代表了Gee Python API在景观研究中的第一个应用之一。此处提出的完整的Foss-Cloud协议由Google Colab中开发的Python代码脚本组成,可以简单地在世界各地进行调整和复制

The necessity of sustainable development for landscapes has emerged as an important theme in recent decades. Current methods take a holistic approach to landscape heritage and promote an interdisciplinary dialogue to facilitate complementary landscape management strategies. With the socio-economic values of the natural and cultural landscape heritage increasingly recognised worldwide, remote sensing tools are being used more and more to facilitate the recording and management of landscape heritage. Satellite remote sensing technologies have enabled significant improvements in landscape research. The advent of the cloud-based platform of Google Earth Engine has allowed the rapid exploration and processing of satellite imagery such as the Landsat and Copernicus Sentinel datasets. In this paper, the use of Sentinel-2 satellite data in the identification of palaeo-riverscape features has been assessed in the Po Plain, selected because it is characterized by human exploitation since the Mid-Holocene. A multi-temporal approach has been adopted to investigate the potential of satellite imagery to detect buried hydrological and anthropogenic features along with Spectral Index and Spectral Decomposition analysis. This research represents one of the first applications of the GEE Python API in landscape studies. The complete FOSS-cloud protocol proposed here consists of a Python code script developed in Google Colab which could be simply adapted and replicated in different areas of the world

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源