论文标题
实例分割工业点云数据
Instance Segmentation of Industrial Point Cloud Data
论文作者
论文摘要
本文提出的挑战是如何有效地最大程度地减少工业设施的自动产生面向对象的几何数字双胞胎(GDT)的成本和体力劳动,以便与初始投资相比,这些收益提供了更多的价值来产生这些模型。我们以前的工作实现了当前的最新类细分性能(每点平均准确性为75%,在Cloi数据集类别中平均AUC为90%),如(Agapaki和Brilakis 2020)所示,并直接从LASER扫描的工业数据中直接产生对模型对象(Cloi类别)最重要的标记点群集。 Cloi代表C形状,L形,O形,I形状及其组合。但是,可以使用可用于拟合几何形状的单个实例的自动分割问题仍未解决。我们认为,实例分割算法的使用具有提供GDT生成所需的输出的理论潜力。我们通过(a)使用cloi-Instance图连接算法解决了实例分割,该算法将对象类的点簇划分为实例,以及(b)改进步骤(a)的点的点的边界分割。我们的方法在Cloi基准数据集(Agapaki等人,2019年)上进行了测试,并分割了平均精度为76.25%的实例,在所有类别中平均每点平均召回率70%。事实证明,这是第一个自动分割工业点云的形状,除了班级标签以外没有其他知识,并且是杂乱无章的工业点云中有效GDT生成的基岩。
The challenge that this paper addresses is how to efficiently minimize the cost and manual labour for automatically generating object oriented geometric Digital Twins (gDTs) of industrial facilities, so that the benefits provide even more value compared to the initial investment to generate these models. Our previous work achieved the current state-of-the-art class segmentation performance (75% average accuracy per point and average AUC 90% in the CLOI dataset classes) as presented in (Agapaki and Brilakis 2020) and directly produces labelled point clusters of the most important to model objects (CLOI classes) from laser scanned industrial data. CLOI stands for C-shapes, L-shapes, O-shapes, I-shapes and their combinations. However, the problem of automated segmentation of individual instances that can then be used to fit geometric shapes remains unsolved. We argue that the use of instance segmentation algorithms has the theoretical potential to provide the output needed for the generation of gDTs. We solve instance segmentation in this paper through (a) using a CLOI-Instance graph connectivity algorithm that segments the point clusters of an object class into instances and (b) boundary segmentation of points that improves step (a). Our method was tested on the CLOI benchmark dataset (Agapaki et al. 2019) and segmented instances with 76.25% average precision and 70% average recall per point among all classes. This proved that it is the first to automatically segment industrial point cloud shapes with no prior knowledge other than the class point label and is the bedrock for efficient gDT generation in cluttered industrial point clouds.