论文标题

病理和正常步态的分类:调查

Classification of Pathological and Normal Gait: A Survey

论文作者

Saxe, Ryan C., Kappagoda, Samantha, Mordecai, David K. A.

论文摘要

步态识别是一个通常称为计算机科学领域中的识别问题的术语。有多种方法和模型能够根据其卧床运动模式来识别个人。通过调查当前有关步态识别的文献,本文旨在确定适当的指标,设备和算法,以收集和分析有关跨个体门诊运动模式和模式的数据。此外,这项调查旨在激发人们对整个州步态扰动(即生理,情感和/或认知状态)的纵向分析范围的兴趣。从更广泛的角度来看,基于纵向和非态分类形式,可以归因于正常步态和病理步态模式的推论。这可能表明有希望的研究方向和实验设计,例如创建用于量化疲劳的算法指标,或用于预测发作疾病的模型。此外,与生理和环境条件的其他测量结合在一起,病理步态分类可能适用于对传染病状态或认知障碍的综合症监测的推断。

Gait recognition is a term commonly referred to as an identification problem within the Computer Science field. There are a variety of methods and models capable of identifying an individual based on their pattern of ambulatory locomotion. By surveying the current literature on gait recognition, this paper seeks to identify appropriate metrics, devices, and algorithms for collecting and analyzing data regarding patterns and modes of ambulatory movement across individuals. Furthermore, this survey seeks to motivate interest in a broader scope of longitudinal analysis regarding the perturbations in gait across states (i.e. physiological, emotive, and/or cognitive states). More broadly, inferences to normal versus pathological gait patterns can be attributed, based on both longitudinal and non-longitudinal forms of classification. This may indicate promising research directions and experimental designs, such as creating algorithmic metrics for the quantification of fatigue, or models for forecasting episodic disorders. Furthermore, in conjunction with other measurements of physiological and environmental conditions, pathological gait classification might be applicable to inference for syndromic surveillance of infectious disease states or cognitive impairment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源