论文标题

结合解剖结构的解剖脑屏障细分

Ensembled ResUnet for Anatomical Brain Barriers Segmentation

论文作者

Ning, Munan, Bian, Cheng, Yuan, Chenglang, Ma, Kai, Zheng, Yefeng

论文摘要

大脑结构的准确性分割可能有助于神经胶质瘤和放射治疗计划。但是,由于不同方式之间的视觉和解剖学差异,大脑结构的准确分割变得具有挑战性。为了解决这个问题,我们首先使用深层编码器和浅解码器构建一个基于残差的U形网络,这可以权衡框架性能和效率。然后,我们介绍了Tversky的损失,以解决不同前景和背景类之间的类不平衡问题。最后,使用模型整体策略来消除异常值并进一步提高性能。

Accuracy segmentation of brain structures could be helpful for glioma and radiotherapy planning. However, due to the visual and anatomical differences between different modalities, the accurate segmentation of brain structures becomes challenging. To address this problem, we first construct a residual block based U-shape network with a deep encoder and shallow decoder, which can trade off the framework performance and efficiency. Then, we introduce the Tversky loss to address the issue of the class imbalance between different foreground and the background classes. Finally, a model ensemble strategy is utilized to remove outliers and further boost performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源