论文标题

硬币:乳房X线摄影乳房诊断的对比标识符网络

COIN: Contrastive Identifier Network for Breast Mass Diagnosis in Mammography

论文作者

Li, Heyi, Chen, Dongdong, Nailon, William H., Davies, Mike E., Laurenson, David

论文摘要

乳腺X线摄影中的计算机辅助乳腺癌诊断是一个具有挑战性的问题,这是由于乳房X线数据稀缺和数据纠缠。特别是,数据稀缺归因于隐私和昂贵的注释。数据纠缠是由于良性和恶性质量之间的高相似性,其中歧管位于较低的尺寸空间中,边缘很小。为了应对这两个挑战,我们提出了一个深度学习框架,称为“对比标识符网络”(\ textsc {Coin}),该框架集成了对抗性增强和基于多种的对比度学习。首先,我们采用对抗性学习来创建ROI的及分布质量。之后,我们提出了一个新颖的对比损失,并通过建筑签名的图形损失。最后,以对比的学习方式优化了神经网络,以改善深层模型对扩展数据集的歧视性。特别是,通过采用硬币,从同一类别的数据样本接近拉开,而具有不同标签的数据样本则在深层的潜在空间中进一步推动。此外,硬币的表现优于最先进的相关算法,该算法通过相当大的边距解决乳腺癌诊断问题,达到93.4 \%的准确性和95.0 \%的AUC得分。该代码将在***上发布。

Computer-aided breast cancer diagnosis in mammography is a challenging problem, stemming from mammographical data scarcity and data entanglement. In particular, data scarcity is attributed to the privacy and expensive annotation. And data entanglement is due to the high similarity between benign and malignant masses, of which manifolds reside in lower dimensional space with very small margin. To address these two challenges, we propose a deep learning framework, named Contrastive Identifier Network (\textsc{COIN}), which integrates adversarial augmentation and manifold-based contrastive learning. Firstly, we employ adversarial learning to create both on- and off-distribution mass contained ROIs. After that, we propose a novel contrastive loss with a built Signed graph. Finally, the neural network is optimized in a contrastive learning manner, with the purpose of improving the deep model's discriminativity on the extended dataset. In particular, by employing COIN, data samples from the same category are pulled close whereas those with different labels are pushed further in the deep latent space. Moreover, COIN outperforms the state-of-the-art related algorithms for solving breast cancer diagnosis problem by a considerable margin, achieving 93.4\% accuracy and 95.0\% AUC score. The code will release on ***.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源