论文标题

电晕民粹主义的影响:来自奥地利和理论的经验证据

The Impact of Corona Populism: Empirical Evidence from Austria and Theory

论文作者

Mellacher, Patrick

论文摘要

我通过调查COVID-19-19大流行期间的一个主要奥地利右翼政党(FPOE)的政策掉头来研究危机情况下的公众舆论与党政策之间的共同发展。我的分析表明,这两者都存在i)“降价”效应,这会导致选民根据政策一致性调整他们的党派偏好,ii)“政党识别”效应,这会导致游击队根据“他们的政党平台”重新调整其政策偏好。具体而言,我使用个人级别的小组数据表明我是“电晕怀疑”选民,他们在2019年第190届前期选举中没有投票赞成FPOE,更有可能投票支持该党后,在该党接受“电晕民粹主义”之后,以及ii的受访者的信念,他们仅在2019年宣布的三分之一的人群中投票赞成,其余的人口众多,其余的人口众多,其余的人口众多,其余的人口众多,其余的人口众多,其余的人口众多,其余的人口众多,其余的人口众所周知,其余的人口众多,其余的人口众多,其余的人口众多,其余的人民却被宣布为第三名。与其他人口相比,他们低估了Covid-19的威胁。使用聚合级的面板数据,我研究了转弯是否产生了显着的行为差异,这些行为差异可以在报告的病例和人均死亡中观察到。自相矛盾的是,转弯后,FPOE投票份额与人均死亡显着相关,但与报告的感染次数无关。我假设这是由于测试中的自我选择偏差,这导致“电晕怀疑论者”的数量与转弯后未报告案件的份额之间的相关性。我发现在COVID-19患病率研究中的个体数据中,我发现了对这一假设的经验支持,该研究涉及有关参与者的真实感染状况的信息。我终于研究了一个简单的异质混合流行病学模型,并表明测试偏见确实可以解释死亡增加而没有增加的病例增加的悖论。

I study the co-evolution between public opinion and party policy in situations of crises by investigating a policy U-turn of a major Austrian right-wing party (FPOE) during the Covid-19 pandemic. My analysis suggests the existence of both i) a "Downsian" effect, which causes voters to adapt their party preferences based on policy congruence and ii) a "party identification" effect, which causes partisans to realign their policy preferences based on "their" party's platform. Specifically, I use individual-level panel data to show that i) "corona skeptical" voters who did not vote for the FPOE in the pre-Covid-19 elections of 2019 were more likely to vote for the party after it embraced "corona populism", and ii) beliefs of respondents who declared that they voted for the FPOE in 2019 diverged from the rest of the population in three out of four health-dimensions only after the turn, causing them to underestimate the threat posed by Covid-19 compared to the rest of the population. Using aggregate-level panel data, I study whether the turn has produced significant behavioral differences which could be observed in terms of reported cases and deaths per capita. Paradoxically, after the turn the FPOE vote share is significantly positively correlated with deaths per capita, but not with the reported number of infections. I hypothesize that this due to a self-selection bias in testing, which causes a correlation between the number of "corona skeptics" and the share of unreported cases after the turn. I find empirical support for this hypothesis in individual-level data from a Covid-19 prevalence study that involves information about participants' true vs. reported infection status. I finally study a simple heterogeneous mixing epidemiological model and show that a testing bias can indeed explain the apparent paradox of an increase in deaths without an increase in reported cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源