论文标题

在Shor和Steane之间:测量错误综合症的统一结构

Between Shor and Steane: A unifying construction for measuring error syndromes

论文作者

Huang, Shilin, Brown, Kenneth R.

论文摘要

容忍量子误差校正需要误差综合症的测量,以最大程度地减少量子数据的相关误差。 Steane和Shor Ancilla是两种众所周知的耐断层综合征提取的方法。在本文中,我们发现了一种统一的结构,该结构产生了一个ancilla块的家族,可以在Shor和Steane之间插入。该家族增加了Ancilla构造的复杂性,以换取减少故障测量误差所需的测量回合。然后,我们将此构造应用于尺寸$ l \ times l $的复曲守则,并发现大小$ m \ times m $的块可用于解码$ O(l/m)$ $ $圆的测量值。我们的方法可以应用于任何calderbank-s-s-s-s-steane代码,并提出了优化耐故障量子计算的新方向。

Fault-tolerant quantum error correction requires the measurement of error syndromes in a way that minimizes correlated errors on the quantum data. Steane and Shor ancilla are two well-known methods for fault-tolerant syndrome extraction. In this paper, we find a unifying construction that generates a family of ancilla blocks that interpolate between Shor and Steane. This family increases the complexity of ancilla construction in exchange for reducing the rounds of measurement required to fault-tolerantly measure the error. We then apply this construction to the toric code of size $L\times L$ and find that blocks of size $m\times m$ can be used to decode errors in $O(L/m)$ rounds of measurements. Our method can be applied to any Calderbank-Shor-Steane codes and presents a new direction for optimizing fault-tolerant quantum computation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源