论文标题

多物理模拟的数据信息模拟器

Data-informed Emulators for Multi-Physics Simulations

论文作者

Lu, Hannah, Ermakova, Dinara, Wainwright, Haruko Murakami, Zheng, Liange, Tartakovsky, Daniel M.

论文摘要

机器学习技术是用于复杂系统模拟器构建的强大工具。我们探索不同的机器学习方法和概念方法,从功能近似到动力近似,到为核废物存储库中工程屏障系统附近发生的热,水文,机械和化学过程构建此类模拟器。部署了两个非线性近似值,即随机森林和神经网络,以捕获基于物理模型的复杂性,并确定其最重要的水文和地球化学参数。我们的仿真器捕获了粘土缓冲液的铀分布系数的时间演变,并确定其功能依赖性对这些关键参数。通过吸收相关的模拟预测指标和聚类策略,进一步提高了模拟器的精度。随机森林和神经网络的相对性能显示了在随机森林算法中集合学习的优势,尤其是对于有限数据的高度非线性问题。

Machine learning techniques are powerful tools for construction of emulators for complex systems. We explore different machine learning methods and conceptual methodologies, ranging from functional approximations to dynamical approximations, to build such emulators for coupled thermal, hydrological, mechanical and chemical processes that occur near an engineered barrier system in the nuclear waste repository. Two nonlinear approximators, random forests and neural networks, are deployed to capture the complexity of the physics-based model and to identify its most significant hydrological and geochemical parameters. Our emulators capture the temporal evolution of the Uranium distribution coefficient of the clay buffer, and identify its functional dependence on these key parameters. The emulators' accuracy is further enhanced by assimilating relevant simulated predictors and clustering strategy. The relative performance of random forests and neural networks shows the advantage of ensemble learning in random forests algorithm, especially for highly nonlinear problems with limited data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源