论文标题
凸多属的推动式操作员
Push-pull operators on convex polytopes
论文作者
论文摘要
舒伯特演算的经典结果是使用Chow环中的差异差(或推扣)操作员对舒伯特周期的感应描述。我们定义了推扣操作员的凸几何类似物,并描述了它们对牛顿 - 科恩科夫凸体理论的应用。凸数学推动式操作员产生了牛顿 - 科恩科夫多个品种的电感构造。特别是,我们使用A型A型几何推动操作员构建了Feigin-Fourier-Littelmann-Vinberg的Minkowski总和。
A classical result of Schubert calculus is an inductive description of Schubert cycles using divided difference (or push-pull) operators in Chow rings. We define convex geometric analogs of push-pull operators and describe their applications to the theory of Newton-Okounkov convex bodies. Convex geometric push-pull operators yield an inductive construction of Newton-Okounkov polytopes of Bott-Samelson varieties. In particular, we construct a Minkowski sum of Feigin-Fourier-Littelmann-Vinberg polytopes using convex geometric push-pull operators in type A.