论文标题
使用对数时间的稳定多数人口协议,并指出
A stable majority population protocol using logarithmic time and states
论文作者
论文摘要
我们研究人口协议,这是一种分布式计算模型,适用于建模良好的化学反应网络和其他物理系统,在该系统中,代理在成对相互作用中交换信息,但无法控制其相互作用伙伴的时间表。研究良好的 *多数 *问题是确定$ n $ n $代理商的初始人口,每个人都有两个意见$ a $ a $ a $ a或$ b $之一,无论是$ a $ a $,更多$ b $还是TIE。 A *稳定 *协议通过最终输入配置来解决此问题,其中所有代理商都同意$ a $ a $,$ b $或$ t $的正确共识决定,从而从中共识无法改变。我们描述了一个协议,该协议使用$ O(\ log n)$状态($ \ log \ log \ log \ log n + o(1)$内存)和最佳的预期时间$ o(\ log n)$。已知$ O(\ log n)$的状态数对于“输出主导”和“单调”的稳定协议类是最佳的。这是我们协议所满足的两个自然限制,使该类别的状态最佳。由于Gasieniec,Stachowiak和Uznanski,我们使用并开发了一种称为“固定分辨率时钟”的关键技术的新颖分析,他们使用$ O(\ log n)$时间展示了多数协议,并指出具有错误可能性的可能性。我们的协议是 *norrifer *:过渡函数具有编码在其中编码的值$ \ left \ lceil {\ log n} \ right \ rceil $。我们表明,该协议可以修改为统一,同时将状态复杂性提高到$θ(\ log n \ log \ log \ log n)$。
We study population protocols, a model of distributed computing appropriate for modeling well-mixed chemical reaction networks and other physical systems where agents exchange information in pairwise interactions, but have no control over their schedule of interaction partners. The well-studied *majority* problem is that of determining in an initial population of $n$ agents, each with one of two opinions $A$ or $B$, whether there are more $A$, more $B$, or a tie. A *stable* protocol solves this problem with probability 1 by eventually entering a configuration in which all agents agree on a correct consensus decision of $A$, $B$, or $T$, from which the consensus cannot change. We describe a protocol that solves this problem using $O(\log n)$ states ($\log \log n + O(1)$ bits of memory) and optimal expected time $O(\log n)$. The number of states $O(\log n)$ is known to be optimal for the class of stable protocols that are "output dominant" and "monotone". These are two natural constraints satisfied by our protocol, making it state-optimal for that class. We use, and develop novel analysis of, a key technique called a "fixed resolution clock" due to Gasieniec, Stachowiak, and Uznanski, who showed a majority protocol using $O(\log n)$ time and states that has a positive probability of error. Our protocol is *nonuniform*: the transition function has the value $\left \lceil {\log n} \right \rceil$ encoded in it. We show that the protocol can be modified to be uniform, while increasing the state complexity to $Θ(\log n \log \log n)$.