论文标题
浆果相诱导的微波腔中孔旋转Qubit的纠缠
Berry-phase induced entanglement of hole-spin qubits in a microwave cavity
论文作者
论文摘要
在半导体结构(例如量子点或缺陷)中定位的孔旋转可实现有效的栅极可调固态量子位。在这里,我们研究了两个电动旋转$ 3/2 $孔,该孔连接到微波炉的电磁场。我们表明,由局部时间依赖的电场产生的非亚伯浆果相之间的相互作用与共享空腔光子可以在没有任何外部磁场的情况下快速操纵,检测和远距离纠缠孔旋转量。由于其几何结构,这种方案比传统的孔自旋量子量子量实现更强大。这些结果表明,通过纯电气手段,孔旋转是可伸缩量子计算的有利量子。
Hole-spins localized in semiconductor structures, such as quantum dots or defects, serve to the realization of efficient gate-tunable solid-state quantum bits. Here we study two electrically driven spin $3/2$ holes coupled to the electromagnetic field of a microwave cavity. We show that the interplay between the non-Abelian Berry phases generated by local time-dependent electrical fields and the shared cavity photons allows for fast manipulation, detection, and long-range entanglement of the hole-spin qubits in the absence of any external magnetic field. Owing to its geometrical structure, such a scheme is more robust against external noises than the conventional hole-spin qubit implementations. These results suggest that hole-spins are favorable qubits for scalable quantum computing by purely electrical means.