论文标题

轻巧且准确的空间 - 周期性变压器,用于交通预测

A Lightweight and Accurate Spatial-Temporal Transformer for Traffic Forecasting

论文作者

Li, Guanyao, Zhong, Shuhan, Chan, S. -H. Gary, Li, Ruiyuan, Hung, Chih-Chieh, Peng, Wen-Chih

论文摘要

我们研究了动态,可能是周期性和联合时空依赖性的交通的预测问题。鉴于从时间插槽0到T-1,城市地区地区的流入和流动流量总计,我们预测任何地区的时间t流量。该地区的先前艺术通常会以脱钩的方式考虑空间和时间依赖性,或者在训练中进行计算密集型,并以大量的超参数调节。我们提出了ST-TIS,这是一种新颖,轻巧且准确的时空变压器,具有信息融合和用于交通预测的区域采样。 ST-TI通过信息融合和区域采样扩展了规范变压器。信息融合模块捕获了区域之间复杂的时空依赖性。区域采样模块是提高效率和预测准确性,从$ O(n^2)$到$ O(n \ sqrt {n})$中削减了依赖关系学习的计算复杂性,其中n是区域的数量。与最先进的模型相比,我们的模型的离线训练在调整和计算方面的距离要快得多(在培训时间和网络参数上最多减少了$ 90 \%$)。尽管有这样的培训效率,但广泛的实验表明,与最先进的方法相比,在线预测中,ST-TI的平均提高了$ 9.5 \%\%$ $ $ $ $ $ $ $ $ $ $ $ $ $ 12.4 \%\%\%\%$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $)。

We study the forecasting problem for traffic with dynamic, possibly periodical, and joint spatial-temporal dependency between regions. Given the aggregated inflow and outflow traffic of regions in a city from time slots 0 to t-1, we predict the traffic at time t at any region. Prior arts in the area often consider the spatial and temporal dependencies in a decoupled manner or are rather computationally intensive in training with a large number of hyper-parameters to tune. We propose ST-TIS, a novel, lightweight, and accurate Spatial-Temporal Transformer with information fusion and region sampling for traffic forecasting. ST-TIS extends the canonical Transformer with information fusion and region sampling. The information fusion module captures the complex spatial-temporal dependency between regions. The region sampling module is to improve the efficiency and prediction accuracy, cutting the computation complexity for dependency learning from $O(n^2)$ to $O(n\sqrt{n})$, where n is the number of regions. With far fewer parameters than state-of-the-art models, the offline training of our model is significantly faster in terms of tuning and computation (with a reduction of up to $90\%$ on training time and network parameters). Notwithstanding such training efficiency, extensive experiments show that ST-TIS is substantially more accurate in online prediction than state-of-the-art approaches (with an average improvement of up to $9.5\%$ on RMSE, and $12.4\%$ on MAPE).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源