论文标题

肺癌诊断的深度学习应用:系统评价

Deep Learning Applications for Lung Cancer Diagnosis: A systematic review

论文作者

Hosseini, Hesamoddin, Monsefi, Reza, Shadroo, Shabnam

论文摘要

近年来,肺癌一直是最普遍的疾病之一。根据该领域的研究,美国每年都确定了200,000多个案件。肺细胞的不受控制的繁殖和生长导致恶性肿瘤形成。最近,深度学习算法,尤其是卷积神经网络(CNN),已成为自动诊断疾病的卓越方法。本文的目的是回顾不同的模型,这些模型在诊断早期肺癌的诊断方面具有不同的准确性和敏感性,并帮助该领域的医师和研究人员。这项工作的主要目的是确定基于深度学习的肺癌中存在的挑战。该调查是系统地编写的,将定期的映射和文献综述结合在一起,以评论32会议和期刊在2016年至2021年中的期刊文章。在分析和审查了这些文章之后,文章中提出的问题正在回答。由于对相关文章的完整审查和系统写作,这项研究优于该领域的其他评论文章。

Lung cancer has been one of the most prevalent disease in recent years. According to the research of this field, more than 200,000 cases are identified each year in the US. Uncontrolled multiplication and growth of the lung cells result in malignant tumour formation. Recently, deep learning algorithms, especially Convolutional Neural Networks (CNN), have become a superior way to automatically diagnose disease. The purpose of this article is to review different models that lead to different accuracy and sensitivity in the diagnosis of early-stage lung cancer and to help physicians and researchers in this field. The main purpose of this work is to identify the challenges that exist in lung cancer based on deep learning. The survey is systematically written that combines regular mapping and literature review to review 32 conference and journal articles in the field from 2016 to 2021. After analysing and reviewing the articles, the questions raised in the articles are being answered. This research is superior to other review articles in this field due to the complete review of relevant articles and systematic write up.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源