论文标题

基于解析的工具,可通过Wiener-Hopf形式主义进行最佳估算和控制

Resolvent-based tools for optimal estimation and control via the Wiener-Hopf formalism

论文作者

Martini, Eduardo, Jung, Junoh, Cavalieri, André V. G., Jordan, Peter, Towne, Aaron

论文摘要

控制工具在复杂流中的应用经常需要近似值,例如减少阶模型和/或简化的强迫假设,在这些假设中可以将其视为低等级或根据简化的统计数据(例如白噪声)定义。在这项工作中,我们提出了一种基于解决的控制方法,其因果关系通过Wiener-Hopf形式主义施加。线性最佳因果估计和控制定律直接从具有任意干扰统计​​的全级全球稳定系统中获得,从而规避了许多替代方法的缺点。我们使用有效的,无基质的方法来构建矩阵Wiener-HOPF问题,并实施了一种量身定制的方法来数值解决问题。该方法自然会用时空颜色强迫术语;它允许在干扰/目标较低的情况下对传感器/执行器放置的廉价参数研究;它直接适用于被高级强迫打扰的复杂流。与标准方法相比,它的成本较低;它可以在不可用的伴随求解器的情况下使用;也可以仅基于实验数据。该方法特别适合控制放大器流,最佳控制方法通常是稳健的。使用线性化的金茨堡 - 兰道方程进行该方法的验证。然后考虑在高排名强迫扰动的向后朝向步骤上流动。在此情况下研究了传感器和执行器的放置,我们表明,尽管步骤下游的流动响应由开尔文 - 霍尔姆兹机制主导,但它具有复杂的,高的接收性,可对传入的上游扰动,需要多个传感器才能进行对照。

The application of control tools to complex flows frequently requires approximations, such as reduced-order models and/or simplified forcing assumptions, where these may be considered low-rank or defined in terms of simplified statistics (e.g. white noise). In this work, we propose a resolvent-based control methodology with causality imposed via a Wiener-Hopf formalism. Linear optimal causal estimation and control laws are obtained directly from full-rank, globally stable systems with arbitrary disturbance statistics, circumventing many drawbacks of alternative methods. We use efficient, matrix-free methods to construct the matrix Wiener-Hopf problem, and we implement a tailored method to solve the problem numerically. The approach naturally handles forcing terms with space-time colour; it allows inexpensive parametric investigation of sensor/actuator placement in scenarios where disturbances/targets are low rank; it is directly applicable to complex flows disturbed by high-rank forcing; it has lower cost in comparison to standard methods; it can be used in scenarios where an adjoint solver is not available; or it can be based exclusively on experimental data. The method is particularly well-suited for the control of amplifier flows, for which optimal control approaches are typically robust. Validation of the approach is performed using the linearized Ginzburg-Landau equation. Flow over a backward-facing step perturbed by high-rank forcing is then considered. Sensor and actuator placement are investigated for this case, and we show that while the flow response downstream of the step is dominated by the Kelvin-Helmholtz mechanism, it has a complex, high-rank receptivity to incoming upstream perturbations, requiring multiple sensors for control.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源