论文标题

内置的自动编码器用于点云自我监督的表示学习

Implicit Autoencoder for Point-Cloud Self-Supervised Representation Learning

论文作者

Yan, Siming, Yang, Zhenpei, Li, Haoxiang, Song, Chen, Guan, Li, Kang, Hao, Hua, Gang, Huang, Qixing

论文摘要

本文主张在基于自动编码器的自我监督3D表示学习中使用隐式表面表示。最流行和可访问的3D表示,即点云,涉及基础连续3D表面的离散样本。这个离散化过程引入了3D形状的采样变化,因此在开发真实3D几何学知识方面具有挑战性。在标准自动编码范式中,编码器不仅被迫编码3D几何形状,还要编码有关3D形状的特定离散采样的信息。这是因为解码器重建的点云被认为是不可接受的,除非原始点和重建点云之间存在完美的映射。本文介绍了隐式自动编码器(IAE),这是一种简单而有效的方法,它通过用隐式解码器替换常用的点云解码器来解决采样变化问题。隐式解码器重建了3D形状的连续表示,与离散样本中的缺陷无关。广泛的实验表明,拟议的IAE在各种自我监管的学习基准中实现了最先进的表现。

This paper advocates the use of implicit surface representation in autoencoder-based self-supervised 3D representation learning. The most popular and accessible 3D representation, i.e., point clouds, involves discrete samples of the underlying continuous 3D surface. This discretization process introduces sampling variations on the 3D shape, making it challenging to develop transferable knowledge of the true 3D geometry. In the standard autoencoding paradigm, the encoder is compelled to encode not only the 3D geometry but also information on the specific discrete sampling of the 3D shape into the latent code. This is because the point cloud reconstructed by the decoder is considered unacceptable unless there is a perfect mapping between the original and the reconstructed point clouds. This paper introduces the Implicit AutoEncoder (IAE), a simple yet effective method that addresses the sampling variation issue by replacing the commonly-used point-cloud decoder with an implicit decoder. The implicit decoder reconstructs a continuous representation of the 3D shape, independent of the imperfections in the discrete samples. Extensive experiments demonstrate that the proposed IAE achieves state-of-the-art performance across various self-supervised learning benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源