论文标题

1D量子晶格系统的工作统计量张量网络方法

Tensor-Network Approach to Work Statistics for 1D Quantum Lattice Systems

论文作者

Gu, Jiayin, Zhang, Fan, Quan, H. T.

论文摘要

我们引入了一种数值方法,以计算最初在热平衡状态下制备的1D量子晶格系统上完成的工作统计数据。这种方法基于两种张量 - 网络技术:时间不断发展的块拆卸(TEBD)和最小的典型热状态(METTS)。前者是一种有效的算法,用于模拟1D量子晶格系统的动力学,而后者是有限温度算法,用于生成一组代表Gibbs规范集合的典型状态。作为一个说明性的例子,我们将这种方法应用于混合横向和纵向场中的Ising链。在任意协议下,可以获得工作的力矩生成函数,从中计算出工作矩,并且可以测试量子jarzynski平等。此外,还对数值方法进行了调整以测试涉及任意观察到的功能的通用量子工作关系。

We introduce a numerical approach to calculate the statistics of work done on 1D quantum lattice systems initially prepared in thermal equilibrium states. This approach is based on two tensor-network techniques: Time Evolving Block Decimation (TEBD) and Minimally Entangled Typical Thermal States (METTS). The former is an efficient algorithm used to simulate the dynamics of 1D quantum lattice systems, while the latter a finite-temperature algorithm for generating a set of typical states representing the Gibbs canonical ensemble. As an illustrative example, we apply this approach to the Ising chain in mixed transverse and longitudinal fields. Under an arbitrary protocol, the moment generating function of the work can be obtained, from which the work moments are numerically calculated and the quantum Jarzynski equality can be tested. Moreover, the numerical approach is also adapted to test the universal quantum work relation involving a functional of an arbitrary observable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源