论文标题

用于多元时间序列回归的图形神经网络,并应用于地震数据

Graph Neural Networks for Multivariate Time Series Regression with Application to Seismic Data

论文作者

Bloemheuvel, Stefan, Hoogen, Jurgen van den, Jozinović, Dario, Michelini, Alberto, Atzmueller, Martin

论文摘要

在深度学习方面的进步,机器学习在分析时间序列中表现出了巨大的潜力。但是,在许多情况下,可以使用可能改善预测的其他信息。这对于来自包含有关传感器位置信息的传感器网络产生的数据至关重要。然后,可以通过图形结构以及顺序(时间序列)信息来利用此类空间信息。将深度学习适应图表的最新进展显示了各种任务的潜力。但是,这些方法尚未在很大程度上适应时间序列任务。大多数尝试本质上是围绕时间序列的序列长度综合的。通常,这些体系结构不太适合回归或分类任务,在该任务中,要预测的值并非严格取决于最近的值,而是取决于时间序列的整个长度。我们提出了Tiser-GCN,这是一种新型的图形神经网络架构,尤其是在多元回归任务中的这些长期序列。我们提出的模型在包含地震波形的两个地震数据集上进行了测试,该数据集的目标是预测每个地震站的地面摇动的最大强度测量。我们的发现证明了我们方法的有希望的结果 - 与表现最佳基线相比,平均MSE降低了16.3%。此外,我们的方法仅需要一半的输入大小来匹配基线得分。通过一项额外的消融研究深入讨论结果。

Machine learning, with its advances in deep learning has shown great potential in analyzing time series. In many scenarios, however, additional information that can potentially improve the predictions is available. This is crucial for data that arise from e.g., sensor networks that contain information about sensor locations. Then, such spatial information can be exploited by modeling it via graph structures, along with the sequential (time series) information. Recent advances in adapting deep learning to graphs have shown potential in various tasks. However, these methods have not been adapted for time series tasks to a great extent. Most attempts have essentially consolidated around time series forecasting with small sequence lengths. Generally, these architectures are not well suited for regression or classification tasks where the value to be predicted is not strictly depending on the most recent values, but rather on the whole length of the time series. We propose TISER-GCN, a novel graph neural network architecture for processing, in particular, these long time series in a multivariate regression task. Our proposed model is tested on two seismic datasets containing earthquake waveforms, where the goal is to predict maximum intensity measurements of ground shaking at each seismic station. Our findings demonstrate promising results of our approach -- with an average MSE reduction of 16.3% - compared to the best performing baselines. In addition, our approach matches the baseline scores by needing only half the input size. The results are discussed in depth with an additional ablation study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源