论文标题
拨号:遥感中的语义细分的深度互动和积极学习
DIAL: Deep Interactive and Active Learning for Semantic Segmentation in Remote Sensing
论文作者
论文摘要
我们在本文中建议建立深层神经网络与循环中的人之间的合作,以迅速获得遥感图像的准确分割图。简而言之,代理与网络进行迭代相互作用,以纠正其最初有缺陷的预测。具体而言,这些相互作用是代表语义标签的注释。我们的方法论贡献是双重的。首先,我们提出了两种交互式学习方案,以将用户输入整合到深度神经网络中。第一个将注释与另一个网络的输入相连。第二个将注释用作稀疏的地面真相来重新训练网络。其次,我们提出了一种积极的学习策略,以指导用户朝着注释最相关的领域。为此,我们比较了不同的最新获取功能,以评估神经网络不确定性,例如confidnet,熵或奥丁。通过对三个遥感数据集的实验,我们显示了提出方法的有效性。值得注意的是,我们表明,基于不确定性估计的积极学习使能够快速引导用户犯错误,因此指导用户干预措施是相关的。
We propose in this article to build up a collaboration between a deep neural network and a human in the loop to swiftly obtain accurate segmentation maps of remote sensing images. In a nutshell, the agent iteratively interacts with the network to correct its initially flawed predictions. Concretely, these interactions are annotations representing the semantic labels. Our methodological contribution is twofold. First, we propose two interactive learning schemes to integrate user inputs into deep neural networks. The first one concatenates the annotations with the other network's inputs. The second one uses the annotations as a sparse ground-truth to retrain the network. Second, we propose an active learning strategy to guide the user towards the most relevant areas to annotate. To this purpose, we compare different state-of-the-art acquisition functions to evaluate the neural network uncertainty such as ConfidNet, entropy or ODIN. Through experiments on three remote sensing datasets, we show the effectiveness of the proposed methods. Notably, we show that active learning based on uncertainty estimation enables to quickly lead the user towards mistakes and that it is thus relevant to guide the user interventions.