论文标题
在ABM中学习复杂的空间行为:一项实验观察性研究
Learning Complex Spatial Behaviours in ABM: An Experimental Observational Study
论文作者
论文摘要
在空间明确的基于个体的模型中捕获和模拟智能自适应行为仍然是研究人员的持续挑战。尽管收集了越来越多的现实行为数据,但很少有能够量化和形式化关键个人行为以及它们如何在时空和时间上改变它们的方法。因此,通常只需要专注于狭窄的行为范围,通常要求使用常用的代理决策框架(例如事件条件 - 行动规则)。我们认为,这些行为框架通常不会反映现实世界的场景,也无法捕获行为如何响应刺激。近年来,人们对机器学习方法及其模拟智能适应行为的潜力增加了兴趣。一种开始在这一领域获得牵引力的方法是增强学习(RL)。本文探讨了如何使用简单的基于Predator-Prey代理模型(ABM)应用RL来创建新兴的代理行为。运行一系列模拟,我们证明了使用新颖的近端政策优化(PPO)算法训练的代理商以表现出现实世界智能自适应行为的特性的方式,例如隐藏,逃避和觅食。
Capturing and simulating intelligent adaptive behaviours within spatially explicit individual-based models remains an ongoing challenge for researchers. While an ever-increasing abundance of real-world behavioural data are collected, few approaches exist that can quantify and formalise key individual behaviours and how they change over space and time. Consequently, commonly used agent decision-making frameworks, such as event-condition-action rules, are often required to focus only on a narrow range of behaviours. We argue that these behavioural frameworks often do not reflect real-world scenarios and fail to capture how behaviours can develop in response to stimuli. There has been an increased interest in Machine Learning methods and their potential to simulate intelligent adaptive behaviours in recent years. One method that is beginning to gain traction in this area is Reinforcement Learning (RL). This paper explores how RL can be applied to create emergent agent behaviours using a simple predator-prey Agent-Based Model (ABM). Running a series of simulations, we demonstrate that agents trained using the novel Proximal Policy Optimisation (PPO) algorithm behave in ways that exhibit properties of real-world intelligent adaptive behaviours, such as hiding, evading and foraging.