论文标题

在需求不确定性的公共交通中断期间的强大路径建议

Robust Path Recommendations During Public Transit Disruptions Under Demand Uncertainty

论文作者

Mo, Baichuan, Koutsopoulos, Haris N., Shen, Max Zuo-Jun, Zhao, Jinhua

论文摘要

当公共交通系统中有严重的服务中断时,乘客通常需要指导才能找到替代路径。本文提出了一个路径建议模型,以减轻公共交通中断期间的交通拥堵。建议使用不同的途径,以不同的路径来最大程度地减少系统的旅行时间。我们将路径推荐问题建模为最佳流量问题,并具有不确定的需求信息。为了解决由于容量限制而缺乏旅行时间的分析公式,我们提出了一个基于模拟的一阶近似,以将原始问题转换为线性程序。需求中的不确定性是使用可靠的优化对路径建议策略进行不准确估计的建模的。芝加哥运输管理局(CTA)系统中现实世界中的铁路破坏情况被用作案例研究。结果表明,即使在不考虑不确定性的情况下,标称模型也可以将系统旅行时间降低9.1%(与现状相比),并且表现优于基于基准容量的路径建议。事件线中乘客的平均旅行时间(即收到建议的乘客)减少了(与现状相比,为-20.6%)。结合需求不确定性后,健壮的模型可以进一步减少系统旅行时间。与名义模型相比,最佳稳健模型可以将事件线乘客的平均旅行时间降低2.91%。当实际需求模式接近最坏情况的需求时,强大模型的改善就会更加突出。

When there are significant service disruptions in public transit systems, passengers usually need guidance to find alternative paths. This paper proposes a path recommendation model to mitigate congestion during public transit disruptions. Passengers with different origins, destinations, and departure times are recommended with different paths such that the system travel time is minimized. We model the path recommendation problem as an optimal flow problem with uncertain demand information. To tackle the lack of analytical formulation of travel times due to capacity constraints, we propose a simulation-based first-order approximation to transform the original problem into a linear program. Uncertainties in demand are modeled using robust optimization to protect the path recommendation strategies against inaccurate estimates. A real-world rail disruption scenario in the Chicago Transit Authority (CTA) system is used as a case study. Results show that even without considering uncertainty, the nominal model can reduce the system travel time by 9.1% (compared to the status quo), and outperforms the benchmark capacity-based path recommendation. The average travel time of passengers in the incident line (i.e., passengers receiving recommendations) is reduced more (-20.6% compared to the status quo). After incorporating the demand uncertainty, the robust model can further reduce system travel times. The best robust model can decrease the average travel time of incident-line passengers by 2.91% compared to the nominal model. The improvement of robust models is more prominent when the actual demand pattern is close to the worst-case demand.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源