论文标题

Neural KEM:具有深系数的内核方法PET图像重建

Neural KEM: A Kernel Method with Deep Coefficient Prior for PET Image Reconstruction

论文作者

Li, Siqi, Gong, Kuang, Badawi, Ramsey D., Kim, Edward J., Qi, Jinyi, Wang, Guobao

论文摘要

低计值发射断层扫描(PET)数据的图像重建具有挑战性。内核方法通过在迭代PET图像重建的正向模型中纳入图像先验信息来应对挑战。已经开发并证明了内核期望最大化(KEM)算法是有效且易于实施的。进一步改进内核方法的一种常见方法是添加明确的正则化,但是导致复杂的优化问题。在本文中,我们通过使用深系数先验提出了内核法的隐式正则化,该系数使用卷积神经网络代表PET向前模型中的内核系数图像。为了解决基于神经网络的最大神经网络的重建问题,我们将优化转移的原理应用于推导神经KEM算法。该算法的每次迭代都由两个单独的步骤组成:用于图像更新的KEM步骤,以及图像域中的深度学习步骤,用于使用神经网络更新内核系数图像。该优化算法可以单调地增加数据的可能性。计算机模拟和实际患者数据的结果表明,神经KEM可以胜过现有的KEM和深层图像先验方法。

Image reconstruction of low-count positron emission tomography (PET) data is challenging. Kernel methods address the challenge by incorporating image prior information in the forward model of iterative PET image reconstruction. The kernelized expectation-maximization (KEM) algorithm has been developed and demonstrated to be effective and easy to implement. A common approach for a further improvement of the kernel method would be adding an explicit regularization, which however leads to a complex optimization problem. In this paper, we propose an implicit regularization for the kernel method by using a deep coefficient prior, which represents the kernel coefficient image in the PET forward model using a convolutional neural-network. To solve the maximum-likelihood neural network-based reconstruction problem, we apply the principle of optimization transfer to derive a neural KEM algorithm. Each iteration of the algorithm consists of two separate steps: a KEM step for image update from the projection data and a deep-learning step in the image domain for updating the kernel coefficient image using the neural network. This optimization algorithm is guaranteed to monotonically increase the data likelihood. The results from computer simulations and real patient data have demonstrated that the neural KEM can outperform existing KEM and deep image prior methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源