论文标题

1998年美国数学学会论文集的Kozlov的猜想:非渗透顺序复合物和不足晶格的概括

A Conjecture of Kozlov from the 1998 Proceedings of the American Mathematical Society: Non-Evasive Order Complexes and Generalizations of Non-Complemented Lattices

论文作者

Farley, Jonathan David

论文摘要

令$ p $为有限孔,带有元素$ s $,以便(1)对于所有$ x \ in P $,$ s \ vee x $或$ s \ s \ wedge x $都存在; (2)对于所有$ x,y \ in p $,使$ x <y $,如果$ s \ wedge x $不存在,但是$ s \ wedge y $确实存在,则存在$(s \ wedge y)\ vee x $。科兹洛夫(Kozlov)是2005年欧洲组合学奖的获奖者(“对于由代数拓扑(代数拓扑)获得的深层组合结果,尤其是为了解决洛瓦斯兹(Lovász)的猜想的解决方案”),在1998年美国数学社会的会议记录中提出了$ p $的复杂级别的1998年。我们证明了这个猜想。

Let $P$ be a finite poset with an element $s$ such that (1) for all $x\in P$, either $s\vee x$ or $s\wedge x$ exists; and (2) for all $x,y\in P$ such that $x<y$, if $s\wedge x$ does not exist but $s\wedge y$ does exist, then $(s\wedge y)\vee x$ exists. Kozlov, the winner of the 2005 European Prize in Combinatorics ("for deep combinatorial results obtained by algebraic topology and particularly for the solution of a conjecture of Lovász"), conjectured in the 1998 Proceedings of the American Mathematical Society that the order complex of $P$ is non-evasive. We prove this conjecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源