论文标题

具有固定数字的随机变量的单数分布函数

Singular distribution functions for random variables with stationary digits

论文作者

Cornean, Horia, Herbst, Ira W., Møller, Jesper, Støttrup, Benjamin B., Sørensen, Kasper S.

论文摘要

令$ f $为基本的累积分布函数(CDF),$ q $扩展$ \ sum_ {n = 1}^\ infty x_n q^{ - n} $,其中$ q \ ge2 $是整数,$ \ \ \ {x_n \ \ \ \ \ \ geq 1} $ \ {0,\ ldots,q-1 \} $。在上一篇论文中,我们表征了$ f $的绝对连续和离散组件。在本文中,我们研究了模型的特殊案例,包括固定的马尔可夫链和任何固定续订点流程,在那里我们建立了纯类型的定律:$ f $是$ [0,1] $的统一或单数CDF。此外,我们研究了此类模型的混合物。在大多数情况下,给出了$ f $的表达式和图。

Let $F$ be the cumulative distribution function (CDF) of the base-$q$ expansion $\sum_{n=1}^\infty X_n q^{-n}$, where $q\ge2$ is an integer and $\{X_n\}_{n\geq 1}$ is a stationary stochastic process with state space $\{0,\ldots,q-1\}$. In a previous paper we characterized the absolutely continuous and the discrete components of $F$. In this paper we study special cases of models, including stationary Markov chains of any order and stationary renewal point processes, where we establish a law of pure types: $F$ is then either a uniform or a singular CDF on $[0,1]$. Moreover, we study mixtures of such models. In most cases expressions and plots of $F$ are given.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源