论文标题
扩散介导的表面反应,布朗功能和Feynman-kac公式
Diffusion-mediated surface reactions, Brownian functionals and the Feynman-Kac formula
论文作者
论文摘要
细胞生物学的许多过程都涉及在包含目标$ \ calu $的域$ω$中的扩散,其边界$ \ partial \ calu $是化学反应性的表面。这样的靶标可以代表单个反应性分子,细胞内室或整个细胞。最近,已经开发了用于研究扩散介导的表面反应的概率框架,该框架考虑了粒子位置的关节概率密度或传播器以及所谓的边界当地时间。后者是布朗粒子在一个完全反射边界上的点附近花费的时间。然后,通过适当的停止条件在边界局部时间通过适当的停止条件合并表面反应的效果。在本文中,我们将扩散介导的表面反应的理论推广到整个内部目标域$ \ calu $作为部分吸收器而不是目标边界$ \ partial \ calu $的情况。现在,粒子可以自由输入和退出$ \ calu $,并且只能在$ \ calu $中反应(被吸收)。当时,适当的布朗功能是职业时间(粒子在$ \ calu $之内的累积时间),而不是当地时间的边界。我们表明,可以通过使用Feynman-KAC公式在统一框架内考虑这两种情况,从而为相应的Brownian功能的传播器得出边界值问题(BVP),并引入相关的停止条件。我们通过计算位于球形域$ω$中心的球形目标$ \ calu $的平均第一通道时间(MFPT)来说明理论。这是通过直接求解传播器BVP而不是使用光谱方法来实现的。我们发现,如果停止时间密度的第一瞬间是无限的,那么MFPT也是无限的,即,球形靶标不足以吸收。
Many processes in cell biology involve diffusion in a domain $Ω$ that contains a target $\calU$ whose boundary $\partial \calU$ is a chemically reactive surface. Such a target could represent a single reactive molecule, an intracellular compartment or a whole cell. Recently, a probabilistic framework for studying diffusion-mediated surface reactions has been developed that considers the joint probability density or propagator for the particle position and the so-called boundary local time. The latter characterizes the amount of time that a Brownian particle spends in the neighborhood of a point on a totally reflecting boundary. The effects of surface reactions are then incorporated via an appropriate stopping condition for the boundary local time. In this paper we generalize the theory of diffusion-mediated surface reactions to cases where the whole interior target domain $\calU$ acts as a partial absorber rather than the target boundary $\partial \calU$. Now the particle can freely enter and exit $\calU$, and is only able to react (be absorbed) within $\calU$. The appropriate Brownian functional is then the occupation time (accumulated time that the particle spends within $\calU$) rather than the boundary local time. We show that both cases can be considered within a unified framework by using a Feynman-Kac formula to derive a boundary value problem (BVP) for the propagator of the corresponding Brownian functional, and introducing an associated stopping condition. We illustrate the theory by calculating the mean first passage time (MFPT) for a spherical target $\calU$ located at the center of a spherical domain $Ω$. This is achieved by solving the propagator BVP directly, rather than using spectral methods. We find that if the first moment of the stopping time density is infinite, then the MFPT is also infinite, that is, the spherical target is not sufficiently absorbing.