论文标题

量子胶囊网络

Quantum Capsule Networks

论文作者

Liu, Zidu, Shen, Pei-Xin, Li, Weikang, Duan, L. -M., Deng, Dong-Ling

论文摘要

胶囊网络结合了连接主义和象征主义的范式,已为人工智能带来了新的见解。作为胶囊网络的构建块,胶囊是由向量代表的一组神经元,用于编码实体的不同特征。通过路由算法,通过胶囊层从层次上提取信息。在这里,我们与有效的量子动态路由算法一起介绍了量子胶囊网络(称为QCAPSNET)。为了基准基准QCAPSNET的性能,我们对手写数字和对称性保护拓扑阶段的分类进行了广泛的数值模拟,并表明QCAPSNET可以实现增强的准确性,并且显然超过了常规的量子分类器。我们进一步解开输出胶囊状态,并发现特定的子空间可能对应于输入数据的人为理解的特征,这表明了此类网络的潜在解释性。我们的工作揭示了Quantum机器学习中量子胶囊网络的有趣前景,这可能为可解释的量子人工智能提供了宝贵的指南。

Capsule networks, which incorporate the paradigms of connectionism and symbolism, have brought fresh insights into artificial intelligence. The capsule, as the building block of capsule networks, is a group of neurons represented by a vector to encode different features of an entity. The information is extracted hierarchically through capsule layers via routing algorithms. Here, we introduce a quantum capsule network (dubbed QCapsNet) together with an efficient quantum dynamic routing algorithm. To benchmark the performance of the QCapsNet, we carry out extensive numerical simulations on the classification of handwritten digits and symmetry-protected topological phases, and show that the QCapsNet can achieve an enhanced accuracy and outperform conventional quantum classifiers evidently. We further unpack the output capsule state and find that a particular subspace may correspond to a human-understandable feature of the input data, which indicates the potential explainability of such networks. Our work reveals an intriguing prospect of quantum capsule networks in quantum machine learning, which may provide a valuable guide towards explainable quantum artificial intelligence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源