论文标题
针对虚拟化网络切片环境的在线分发异常检测
Distributed Online Anomaly Detection for Virtualized Network Slicing Environment
论文作者
论文摘要
由于网络切片是通信网络中的关键推动因素之一,因此携带多个虚拟网络元素的基板网络中的一个异常物理节点(PN)或物理链接(PL)可能会导致多个网络切片的性能降低。为了在短时间内从异常中恢复底物网络,对PNS和PLS中是否存在异常的快速准确识别至关重要。首选可以实时分析系统数据的在线异常检测方法。此外,由于映射到PN和PL的虚拟节点和链接散布在多个切片中,因此需要分布式检测模式来适应虚拟化环境。根据这些要求,在本文中,我们首先提出了一个基于分散的单级支持向量机(OCSVM)的分布式在线PN异常检测算法,该算法通过分析以分布式方式分析为PNS映射到PNS的虚拟节点的实时测量来实现。具体来说,要使OCSVM目标函数解除,我们通过引入共识约束将原始问题转换为一组分散的二次编程问题。采用乘数的交替方向方法来实现分布式在线PN异常检测的解决方案。接下来,通过利用邻居虚拟节点之间的测量相关性,提出了基于规范相关分析的另一个分布在线pl异常检测算法。该网络只需要存储当前数据的协方差矩阵和平均值向量即可计算实时PL异常分析的规范相关向量。合成和现实世界网络数据集的仿真结果显示了拟议分布的在线异常检测算法的有效性和鲁棒性。
As the network slicing is one of the critical enablers in communication networks, one anomalous physical node (PN) or physical link (PL) in substrate networks that carries multiple virtual network elements can cause significant performance degradation of multiple network slices. To recover the substrate networks from anomaly within a short time, rapid and accurate identification of whether or not the anomaly exists in PNs and PLs is vital. Online anomaly detection methods that can analyze system data in real-time are preferred. Besides, as virtual nodes and links mapped to PNs and PLs are scattered in multiple slices, the distributed detection modes are required to adapt to the virtualized environment. According to those requirements, in this paper, we first propose a distributed online PN anomaly detection algorithm based on a decentralized one-class support vector machine (OCSVM), which is realized through analyzing real-time measurements of virtual nodes mapped to PNs in a distributed manner. Specifically, to decouple the OCSVM objective function, we transform the original problem to a group of decentralized quadratic programming problems by introducing the consensus constraints. The alternating direction method of multipliers is adopted to achieve the solution for the distributed online PN anomaly detection. Next, by utilizing the correlation of measurements between neighbor virtual nodes, another distributed online PL anomaly detection algorithm based on the canonical correlation analysis is proposed. The network only needs to store covariance matrices and mean vectors of current data to calculate the canonical correlation vectors for real-time PL anomaly analysis. The simulation results on both synthetic and real-world network datasets show the effectiveness and robustness of the proposed distributed online anomaly detection algorithms.