论文标题
纤维多态理论
Fibered Multicategory Theory
论文作者
论文摘要
鉴于groupoids d:d-> i的振动,我们将纤维的多酸酯定义为特定的函子p:m-> i,其中m具有与d相同的对象,其箭头a:x-> y应该被视为多级箭头家族的多级箭头家族,由py索引。钥匙公理将D给出的对象的重新索引扩展到沿M中的M中的箭头的重新索引。 在这种情况下,自然而然地定义和研究了笛卡尔纤维多材。
Given a fibration in groupoids d : D -> I, we define a fibered multicategory as a particular functor p : M -> I, where M has the same objects as D, and its arrows a : X -> Y should be thought of as families of arrows in the multicategory, indexed by pY. The key axiom extends the reindexing of objects, given by d, to a reindexing of arrows in M along pullback squares in I. When D is included in M, in an appropriate sense, one gets again fibered categories. In this context, cartesian fibered multicategories are defined and studied in a natural way.