论文标题

广义量子相似性学习

Generalized quantum similarity learning

论文作者

Radha, Santosh Kumar, Jao, Casey

论文摘要

物体之间的相似性在广泛的区域中很重要。虽然可以使用现成的距离函数来测量相似性,但它们可能无法捕获相似性的固有含义,这往往取决于基础数据和任务。此外,常规距离函数限制了相似性度量的空间为对称,并且不直接允许比较来自不同空间的对象。我们建议使用量子网络(GQSIM)学习任务依赖性(a)在不需要具有相同维度的数据之间的对称相似性。我们通过分析(对于简单的情况)和数值(对于复杂情况)分析了这种相似性函数的属性,并且这些相似性措施可以提取数据的显着特征。我们还证明,使用此技术得出的相似性度量为$(ε,γ,τ)$ - 良好,从而在理论上保证了性能。最后,我们通过将此技术应用于三个相关应用程序 - 分类,图形完成,生成建模来得出结论。

The similarity between objects is significant in a broad range of areas. While similarity can be measured using off-the-shelf distance functions, they may fail to capture the inherent meaning of similarity, which tends to depend on the underlying data and task. Moreover, conventional distance functions limit the space of similarity measures to be symmetric and do not directly allow comparing objects from different spaces. We propose using quantum networks (GQSim) for learning task-dependent (a)symmetric similarity between data that need not have the same dimensionality. We analyze the properties of such similarity function analytically (for a simple case) and numerically (for a complex case) and showthat these similarity measures can extract salient features of the data. We also demonstrate that the similarity measure derived using this technique is $(ε,γ,τ)$-good, resulting in theoretically guaranteed performance. Finally, we conclude by applying this technique for three relevant applications - Classification, Graph Completion, Generative modeling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源