论文标题

局部稀薄的随机场的吉布斯程度

Gibbsianness of locally thinned random fields

论文作者

Engler, Nils, Jahnel, Benedikt, Kuelske, Christof

论文摘要

我们考虑$ \ Mathbb Z^d $上的本地稀薄的Bernoulli字段,这是Euclidean Space中类型IMatérn铁杆过程的晶格版本。它作为职业变量的晶格字段,作为I.I.D的图像获得。在地图下,伯努利晶格场带有占用概率$ p $,在保留隔离粒子的同时,将所有粒子与邻居删除。我们证明,变薄的度量具有Gibbsian的代表性,并可以控制其准邻系依赖性,无论是在小$ p $的制度中,还是在大$ p $的制度中,在这里变薄的变化改变了伯努利的测量。我们的方法依赖于Dobrushin唯一性标准,分歧渗透论证和集群扩展。

We consider the locally thinned Bernoulli field on $\mathbb Z^d$, which is the lattice version of the Type-I Matérn hardcore process in Euclidean space. It is given as the lattice field of occupation variables, obtained as image of an i.i.d. Bernoulli lattice field with occupation probability $p$, under the map which removes all particles with neighbors, while keeping the isolated particles. We prove that the thinned measure has a Gibbsian representation and provide control on its quasilocal dependence, both in the regime of small $p$, but also in the regime of large $p$, where the thinning transformation changes the Bernoulli measure drastically. Our methods rely on Dobrushin uniqueness criteria, disagreement percolation arguments, and cluster expansions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源