论文标题

邻居总和区分图的总彩色的扩展

An extension on neighbor sum distinguishing total coloring of graphs

论文作者

Chang, Jing-zhi, Yang, Chao, Yin, Zhi-xiang, Yao, Bing

论文摘要

令$ f:v(g)\ cup e(g)\ rightArrow \ {1,2,\ dots,k \} $是$ g $的非proper $ k $ - 颜色。将重量功能定义为$$ ϕ(x)= f(x)+\ sum \ limits_ {e \ ni x} f(e)+\ sum \ limits_ {y \ in n(x)} f(y),$ n(y),$ n(x)= \ n(x)= \ {y in v(y in v in v(g) @ xy e(x y(g)如果对于任何边缘$ xy \ e(g)$中的任何边缘$ xy \ $ ϕ(x)\ neq ϕ(y)$,则$ f $称为邻居全额分别区分$ g $的总$ k $ - 颜色。 $ g $具有这样的着色的最小值$ k $称为邻居总和区分$ g $的总色数,并用fgndi $ _ {\ sum}(g)$表示。着色是邻居总和区分非操作器总彩色的扩展。在本文中,我们猜测FGNDI $ _ {\ sum}(g)\ leq 3 $对于任何连接的订单的订单$ g $至少三个。我们证明了(i)路径和周期的猜想是正确的。 (ii)3个规则图和(iii)星星,完整的图形,树,超振管,两部分图和完整的$ r $ - 分段图。特别是,完整的图可以实现上述猜想的上限。

Let $f: V(G)\cup E(G)\rightarrow \{1,2,\dots,k\}$ be a non-proper total $k$-coloring of $G$. Define a weight function on total coloring as $$ϕ(x)=f(x)+\sum\limits_{e\ni x}f(e)+\sum\limits_{y\in N(x)}f(y),$$ where $N(x)=\{y\in V(G)|xy\in E(G)\}$. If $ϕ(x)\neq ϕ(y)$ for any edge $xy\in E(G)$, then $f$ is called a neighbor full sum distinguishing total $k$-coloring of $G$. The smallest value $k$ for which $G$ has such a coloring is called the neighbor full sum distinguishing total chromatic number of $G$ and denoted by fgndi$_{\sum}(G)$. The coloring is an extension of neighbor sum distinguishing non-proper total coloring. In this paper we conjecture that fgndi$_{\sum}(G)\leq 3$ for any connected graph $G$ of order at least three. We prove that the conjecture is true for (i) paths and cycles; (ii) 3-regular graphs and (iii) stars, complete graphs, trees, hypercubes, bipartite graphs and complete $r$-partite graphs. In particular, complete graphs can achieve the upper bound for the above conjecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源