论文标题
$ \ mathbb r^ω$的Borel线性子空间无法涵盖许多封闭的HAAR套装
A Borel linear subspace of $\mathbb R^ω$ that cannot be covered by countably many closed Haar-meager sets
论文作者
论文摘要
我们证明,可计数的产品产品包含一个Borel线性子空间$ l \ ne \ Mathbb r^ω$,该$无法被许多封闭的Haar辅助组所覆盖。此示例应用于研究拓扑矢量空间中的各个类别的``大''集合与kuczma类之间的相互作用。
We prove that the countable product of lines contains a Borel linear subspace $L\ne\mathbb R^ω$ that cannot be covered by countably many closed Haar-meager sets. This example is applied to studying the interplay between various classes of ``large'' sets and Kuczma--Ger classes in the topological vector spaces $\mathbb R^n$ for $n\le ω$.